Optimal Control of Polymer Flooding Based on Maximum Principle

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Control of Polymer Flooding Based on Maximum Principle

Polymer flooding is one of the most important technologies for enhanced oil recovery EOR . In this paper, an optimal control model of distributed parameter systems DPSs for polymer injection strategies is established, which involves the performance index as maximum of the profit, the governing equations as the fluid flow equations of polymer flooding, and the inequality constraint as the polyme...

متن کامل

Dynamic Optimization of a Polymer Flooding Process Based on Implicit Discrete Maximum Principle

Polymer flooding is one of the most important technologies for enhanced oil recovery EOR . In this paper, an optimal control model of distributed parameter systems DPSs for polymer injection strategies is established, which involves the performance index as maximum of the profit, the governing equations as the fluid flow equations of polymer flooding, and some inequality constraints as polymer ...

متن کامل

Pontryagin Maximum Principle for Optimal Control of

In this paper we investigate optimal control problems governed by variational inequalities. We present a method for deriving optimality conditions in the form of Pontryagin's principle. The main tools used are the Ekeland's variational principle combined with penalization and spike variation techniques. 1. Introduction. The purpose of this paper is to present a method for deriving a Pontryagin ...

متن کامل

Optimal Control Theory - Module 3 - Maximum Principle

subject to (tf , x(tf )) ∈ S = [t0,∞)× S1 where S1 is a k dimensional manifold in Rn S1 = {x ∈ R : h1(x) = h2(x) = · · · = hn−k(x) = 0} where hi are C1 functions from Rn to R subject to ẋ = f(x, u), x(t0) = x0 for u ∈ C[t0, T ] and u(t) ∈ U ⊂ Rm with f and L being C1 functions. Let u∗ : [t0, tf ] → R be an optimal control with state trajectory x∗ : [t0, tf ] → Rn and a constant. Then there exis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics

سال: 2012

ISSN: 1110-757X,1687-0042

DOI: 10.1155/2012/987975